Multi-Source Augmentation and Composite Prompts for Visual Recognition with Missing Modality

Zhirui Kuai, Yulu Zhou, Qi Xie, Li Kuang*

• **Motivations:**
 - The prevalence of missing modalities in visual recognition tasks poses a significant challenge to model performance. Existing approaches, which often address only single-modality losses and require substantial retraining, are inadequate for environments with constrained computational resources.

• **key idea:**
 - We are aimed to enhance vision-language models’ robustness against missing modalities through a combination of multi-source data augmentation and composite prompts, enabling improved performance with limited computational resources.

• **Contributions:**
 - We present a dynamic framework that combines diverse data augmentation techniques, enabling models to select optimal augmented data autonomously during training.
 - The MACP method optimizes computational efficiency, suitable for limited-resource environments, by fine-tuning minimal model parameters.
 - Experiments on three datasets (MM-IMDb, Food101, MVSA-Single*) validate MACP’s effectiveness in handling single and multiple missing modalities.

• **Methodology:**
 • **Problem definition:**
 The dataset \mathcal{D}_ϵ is represented as a collection of multimodal samples, where each sample consists of a pair of modalities and a label.

 The parameter η is used to control the proportion of missing modalities in the dataset. It is an adjustable value that helps simulate the scenario of missing data.

• **The Overall Framework of MACP:**

• **Multi-Source Data Augmentation:**
 Integration of multiple data augmentation techniques with a selector for tailored enhancements.

Table 1: Performance of the ViLT model in the MM-IMDb classification task using augmented data under a condition of 50% modal data missing, with a comparative reference to its training on a complete dataset (0% missing).

<table>
<thead>
<tr>
<th>Missing rate</th>
<th>ViLT</th>
<th>ViLT-T</th>
<th>ViLT-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% (Complete)</td>
<td>94.13</td>
<td>94.94</td>
<td>94.95</td>
</tr>
<tr>
<td>30% (Image)</td>
<td>83.11</td>
<td>83.67</td>
<td>83.67</td>
</tr>
<tr>
<td>30% (Text)</td>
<td>48.65</td>
<td>54.07</td>
<td>54.07</td>
</tr>
</tbody>
</table>

Motivations:
- The prevalence of missing modalities in visual recognition tasks poses a significant challenge to model performance. Existing approaches, which often address only single-modality losses and require substantial retraining, are inadequate for environments with constrained computational resources.

key idea:
- We are aimed to enhance vision-language models’ robustness against missing modalities through a combination of multi-source data augmentation and composite prompts, enabling improved performance with limited computational resources.

Contributions:
- We present a dynamic framework that combines diverse data augmentation techniques, enabling models to select optimal augmented data autonomously during training.
- The MACP method optimizes computational efficiency, suitable for limited-resource environments, by fine-tuning minimal model parameters.
- Experiments on three datasets (MM-IMDb, Food101, MVSA-Single*) validate MACP’s effectiveness in handling single and multiple missing modalities.

Methodology:
- **Problem definition:**
 - The dataset \mathcal{D}_ϵ is represented as a collection of multimodal samples, where each sample consists of a pair of modalities and a label.

 - The parameter η is used to control the proportion of missing modalities in the dataset. It is an adjustable value that helps simulate the scenario of missing data.

The Overall Framework of MACP:

Multi-Source Data Augmentation:
Integration of multiple data augmentation techniques with a selector for tailored enhancements.

Table 1: Performance of the ViLT model in the MM-IMDb classification task using augmented data under a condition of 50% modal data missing, with a comparative reference to its training on a complete dataset (0% missing).

<table>
<thead>
<tr>
<th>Missing rate</th>
<th>ViLT</th>
<th>ViLT-T</th>
<th>ViLT-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% (Complete)</td>
<td>94.13</td>
<td>94.94</td>
<td>94.95</td>
</tr>
<tr>
<td>30% (Image)</td>
<td>83.11</td>
<td>83.67</td>
<td>83.67</td>
</tr>
<tr>
<td>30% (Text)</td>
<td>48.65</td>
<td>54.07</td>
<td>54.07</td>
</tr>
</tbody>
</table>

Motivations:
- The prevalence of missing modalities in visual recognition tasks poses a significant challenge to model performance. Existing approaches, which often address only single-modality losses and require substantial retraining, are inadequate for environments with constrained computational resources.

key idea:
- We are aimed to enhance vision-language models’ robustness against missing modalities through a combination of multi-source data augmentation and composite prompts, enabling improved performance with limited computational resources.

Contributions:
- We present a dynamic framework that combines diverse data augmentation techniques, enabling models to select optimal augmented data autonomously during training.
- The MACP method optimizes computational efficiency, suitable for limited-resource environments, by fine-tuning minimal model parameters.
- Experiments on three datasets (MM-IMDb, Food101, MVSA-Single*) validate MACP’s effectiveness in handling single and multiple missing modalities.

Methodology:
- **Problem definition:**
 - The dataset \mathcal{D}_ϵ is represented as a collection of multimodal samples, where each sample consists of a pair of modalities and a label.

 - The parameter η is used to control the proportion of missing modalities in the dataset. It is an adjustable value that helps simulate the scenario of missing data.

The Overall Framework of MACP:

Multi-Source Data Augmentation:
Integration of multiple data augmentation techniques with a selector for tailored enhancements.

Table 1: Performance of the ViLT model in the MM-IMDb classification task using augmented data under a condition of 50% modal data missing, with a comparative reference to its training on a complete dataset (0% missing).

<table>
<thead>
<tr>
<th>Missing rate</th>
<th>ViLT</th>
<th>ViLT-T</th>
<th>ViLT-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0% (Complete)</td>
<td>94.13</td>
<td>94.94</td>
<td>94.95</td>
</tr>
<tr>
<td>30% (Image)</td>
<td>83.11</td>
<td>83.67</td>
<td>83.67</td>
</tr>
<tr>
<td>30% (Text)</td>
<td>48.65</td>
<td>54.07</td>
<td>54.07</td>
</tr>
</tbody>
</table>

Motivations:
- The prevalence of missing modalities in visual recognition tasks poses a significant challenge to model performance. Existing approaches, which often address only single-modality losses and require substantial retraining, are inadequate for environments with constrained computational resources.

key idea:
- We are aimed to enhance vision-language models’ robustness against missing modalities through a combination of multi-source data augmentation and composite prompts, enabling improved performance with limited computational resources.

Contributions:
- We present a dynamic framework that combines diverse data augmentation techniques, enabling models to select optimal augmented data autonomously during training.
- The MACP method optimizes computational efficiency, suitable for limited-resource environments, by fine-tuning minimal model parameters.
- Experiments on three datasets (MM-IMDb, Food101, MVSA-Single*) validate MACP’s effectiveness in handling single and multiple missing modalities.

Methodology:
- **Problem definition:**
 - The dataset \mathcal{D}_ϵ is represented as a collection of multimodal samples, where each sample consists of a pair of modalities and a label.

 - The parameter η is used to control the proportion of missing modalities in the dataset. It is an adjustable value that helps simulate the scenario of missing data.

The Overall Framework of MACP:

Multi-Source Data Augmentation:
Integration of multiple data augmentation techniques with a selector for tailored enhancements.