Discovering Multi-Relational Integration for Knowledge Tracing with Retentive Networks

Lin Hao Zhou1,2, Sheng-hua Zhong1,\ast, Zhijiao Xiao1,\ast

1 College of Computer Science and Software Engineering, Shenzhen University
2 National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University

1. Introduction

Definition: Knowledge Tracing (KT) focuses on estimating students’ knowledge states and predicting their future performances, which is a crucial task for online education platforms.

Motivation:
- Current KT models do not fully utilize the inter-exercises information and the advanced-relation question-skill information, which are key to the KT task.
- Psychological researches indicate that forgetting is a significant factor affecting students’ learning states, but some models miss it.

2. Proposed Model

![MRIKT framework](image)

Fig. 1. An overview of MRIKT framework. MRIKT consists of three key modules: graph representation module, retentive module, and prediction module.

3. Experiments

<table>
<thead>
<tr>
<th>Datasets</th>
<th>BKT</th>
<th>DKT</th>
<th>DKVMN</th>
<th>SKVMN</th>
<th>SAKT</th>
<th>KAT</th>
<th>CoKT</th>
<th>MRT-KT</th>
<th>MLFBK</th>
<th>MRIKT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSIST09</td>
<td>0.6571</td>
<td>0.7532</td>
<td>0.7550</td>
<td>0.7441</td>
<td>0.7894</td>
<td>0.8028</td>
<td>0.7682</td>
<td>0.8233</td>
<td>0.8524</td>
<td>0.9368</td>
</tr>
<tr>
<td>ASSIST12</td>
<td>0.6204</td>
<td>0.7225</td>
<td>0.7283</td>
<td>-</td>
<td>0.7206</td>
<td>0.8469</td>
<td>0.7401</td>
<td>0.7698</td>
<td>0.8350</td>
<td>0.9630</td>
</tr>
<tr>
<td>Ednet</td>
<td>0.6027</td>
<td>0.6825</td>
<td>0.6967</td>
<td>0.7066</td>
<td>0.6879</td>
<td>0.7066</td>
<td>0.7374</td>
<td>0.7753</td>
<td>0.8278</td>
<td>0.9344</td>
</tr>
</tbody>
</table>

Table 1. Comparisons of the AUC results of different models on the three datasets. The best results are highlighted in bold, while the second best results are underlined.

4. Conclusion

- This paper proposed MRIKT, a knowledge tracing model with multi-relational integration, which fully utilizes advanced-relation question-skill information, inter-exercise information, and forgetting factor.
- In comparison with other baseline models, MRIKT exhibits superior performance in comprehensive experiments and the associated ablation study conducted on three real-world datasets. And the model improves at least 8.44% compared to baseline models.